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For a long time the structural and molecular features of mammalian histidine decarboxylase (EC 4.1.1.22), the enzyme that
produces histamine, have evaded characterization. We overcome the experimental problems for the study of this enzyme by
using a computer-based modelling and simulation approach, and have now the conditions to use histidine decarboxylase as
a target in histamine pharmacology. In this review, we present the recent (last 5 years) advances in the structure–function
relationship of histidine decarboxylase and the strategy for the discovery of new drugs.
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Introduction and historical background

Histamine has many different and important roles in mam-
malian physiopathology. Among other physiopathological
processes, it is involved in allergy and other inflammatory
responses, gastric acid secretion, bone loss, the control of
sleep and food intake, and schizophrenia (Jorgensen et al.,
2007; Haas et al., 2008; Ohtsu, 2008; Schubert and Peura,
2008). Currently, the effects of histamine are controlled by
using modulators (mainly antagonists), tailored as specifically
as possible to block the histamine binding to one of the four
known membrane histamine receptors (H1, H2, H3 and H4). All
of these subtypes are homologous G protein-coupled recep-
tors specialized to elicit particular intracellular signals for
different physiopathological effects (Kuramasu et al., 2006;
Gurevich and Gurevich, 2008; Thurmond et al., 2008). The
present strategy used to control unwanted effects of histamine
involves finding a specific antagonist that will interfere with a
given undesirable effect of the amine on a particular process,
with the lowest possible side-effects on other cell types that
express different histamine receptor subtypes specific for

other physiological effects (see other chapters in this
number). However, in practice, this is not an easy task due to
the homology among the receptor proteins and the similari-
ties in their methods of binding a common small biomol-
ecule, namely histamine. As such, cross-reaction is one of the
major problems of this strategy. In addition, the effective
blockage of a given receptor by a specific antagonist may
avoid one physiological effect of histamine, but does not
prevent the higher synthesis and/or release of histamine that
characterizes many histamine-related diseases. An increase in
endogenous/newly synthesized histamine can have multiple
consequences at both cellular and systemic levels; these
effects need further molecular characterization to be con-
trolled (Tanaka and Ichikawa, 2006). How can we control
histamine synthesis?

Histamine is produced by a-decarboxylation of histidine
and this reaction is catalysed by histidine decarboxylase
(HDC). In mammals and other eukaryotic organisms, as well
as in Gram-negative bacteria, HDC is a pyridoxal-5’-
phosphate (PLP)-dependent enzyme (EC 4.1.1.22) expressed
only in a small number of cell types, mainly mast cells,
neurons located in the posterior hypothalamus and gastric
enterochromaphin-like cells (Medina et al., 2003; 2005). Some
important aspects of HDC regulation of histamine synthesis
have been elucidated in gastric cells (Chen et al., 2006; Ai
et al., 2007), but not much is known of this process in other
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cell types where HDC expression seems to be associated with
poorly-characterized cell differentiation processes and/or
subject to alterations in the control of cell proliferation (Fitz
et al., 2008; Tachibana et al., 2008). At present, there is no
clear strategy for controlling histamine production by inter-
fering with HDC expression.

For a long time, a characterization of the activity of these
HDC enzymes has been restricted by their extreme instability.
There are no X-rays depicting the structure of any PLP-
dependent HDC. In mammals, the problem is even more
complex, as the enzyme needs to undergo post-translational
maturation to reach its active form. The precursor of the
active enzyme seems to be a fusion of a fragment homologous
to other PLP-dependent amino acid decarboxylases, and a
C-terminal portion (around 160 amino acids), with an
unknown role (apart from inhibition of the enzymic activity)
and no obvious homology with other functional proteins.
This terminal fragment is lost during the activation of the
enzyme (Engel et al., 1996; Fleming et al., 2004a), but its intra-
cellular function and the proteolytic mechanisms for both its
cleavage and the degradation of the active enzyme (both very
rapid and complex processes) have not been completely elu-
cidated. Different proteolytic mechanisms have been pro-
posed: calpains, proteasome and caspase-9 (Viguera et al.,
1994; Olmo et al., 1999; 2000; Rodriguez-Agudo et al., 2000;
Furuta et al., 2007), but stabilization of the enzyme seems to
be neither a useful nor a feasible target for a specific interven-
tion affecting mammalian HDC levels.

In spite of its instability, even in purified preparations
(Olmo et al., 2000; Fleming et al., 2004b), putative inhibitors
able to bind directly to the protein have been tested, in vitro,
using cell-free extracts and recombinant mammalian HDC
(Olmo et al., 2002; Rodriguez-Caso et al., 2003a). In fact,
several substrate analogues and natural products have
been described as direct HDC inhibitors; these include
a-fluromethylhistidine (a-FMH), histidine methyl ester
(HME) (DeGraw et al., 1977) and a compound derived from
green tea, epigallocatechin-3-gallate (EGCG) (Rodriguez-Caso
et al., 2003a,b). In the case of the substrate analogues (a-FMH
and HME), their mechanisms of action seem to be completely
understood. Both analogues react with PLP. HME cannot be
decarboxylated and blocks the enzyme in the external aldi-
mine state; a-FMH proceeds to decarboxylation but then
forms inactive derivatives of the PLP-product adduct, which
are then released slowly from the catalytic site. Nevertheless,
these are not specific inhibitors for the mammalian enzyme,
since they also act on the homologous PLP-dependent HDC
of enterobacteria (Bhattacharjee and Snell, 1990). Thus, their
usefulness as therapeutic agents seems to be very limited. Of
the many different natural products, EGCG is the one with
the greatest inhibitory capacity against mammalian HDC
(Nitta et al., 2007), with promising anti-inflammatory effects
when assayed in mast cells and monocytes (Melgarejo et al.,
2007). It binds to the enzyme and seems to change the PLP
conformation inside the catalytic site, so blocking its reaction
with the substrate (Rodriguez-Caso et al., 2003b). Neverthe-
less, the nature of the binding is not yet known. In addition,
EGCG is not a specific inhibitor of mammalian HDC, since it
is also able to bind and effectively inactivate aromatic
L-amino acid (or Dopa) decarboxylase (DDC) (Bertoldi et al.,

2001), another important element of our neurological and
neuroendocrine system; DDC is the enzyme responsible for
the synthesis of the neurotransmitters 5-hydroxytryptamine
and dopamine (Haavik et al., 2008). In summary, specificity is
the problem in constructing a strategy against the histamine-
producing enzyme (Moya-Garcia et al., 2006). The ideal
inhibitor should be able to inhibit the mammalian enzyme
but have minimal effects on other enzymes present in the
human organism and necessary for its homeostasis.

The enterobacterial HDC and both mammalian DDC and
HDC are homologous enzymes; all belong to the DDC group
II (Sandmeier et al., 1994). Their evolutionary relationships
have recently been characterized (Moya-Garcia et al., 2006).
The search for specific new inhibitors able to discriminate
between these requires a deep structural and functional
knowledge, to detect relevant differences among their struc-
tures. Then chemical structures, or chemical modifications of
previously known structures, that bind preferentially to only
one of them (in our case, mammalian HDC) can be designed.
Only the structure for pig DDC has been elucidated from the
DDC group II; however, its high sequence identity (higher
than 50%) with mammalian HDC (active fragment) allowed
us to obtain a 3-D model of the latter using comparative
modelling techniques (Baker and Sali, 2001). This model was
experimentally validated by results obtained with more than
25 direct mutants that were assayed by different biophysical
techniques (Fleming et al., 2004b). The initial review of the
structure–function relationship of mammalian HDC inte-
grated all the previous information about this enzyme based
on its structural characteristics (Moya-Garcia et al., 2005).
More recently, the decarboxylation reaction (the rate-limiting
step for histamine synthesis) has been analysed by applying a
combined strategy of quantum mechanics (QM) and molecu-
lar mechanics (MM) simulations on the external aldimine
(PLP-histidine) complex located in the catalytic site of the
enzyme (Moya-Garcia et al., 2008). Therefore, the exact loca-
tion of all residues involved in this reaction and their behav-
iour along the reaction is now known, facilitating the search
for new potential inhibitory compounds for this reaction. All
this previous information is highly valuable for the construc-
tion of in silicio experiments aimed at finding new drugs.

Today, the field of in silicio drug development is very attrac-
tive, active and fertile, but is still very new. Genomic and
proteomic studies produce vast amounts of information,
facilitating the identification of new therapeutically relevant
targets, which allows the generation of libraries of com-
pounds with rational chemical combinations. The technique
called virtual screening (VS) uses computers to search data-
bases of millions of compounds (already synthesized or not)
for those chemical entities able to interact with a given target,
thus able to interfere with its activity (Shoichet, 2004). These
chemicals can then be tested against the target in order to
obtain new candidates for a specific drug. In addition to the
essential role played by the advances in experimental and
theoretical fields, the incredible progress in computer tech-
nology has been decisive in our understanding of biological
structures and the processes in which they are involved. Mod-
elling unknown structures from bare sequences, long simula-
tions of enzymes and complex multimeric structures, and
large-scale VS experiments are now performed routinely
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thanks to the availability of fast processors at modest prices.
However, the expected revolution in rational drug discovery
has not yet arrived, despite all these advances. The main
limitations are the availability of reliable structural models for
the target (having at hand a 3-D structure of the target in most
of the cases is not enough) (Davis et al., 2003) and the inclu-
sion (at accurate levels) of some important effects such as the
environment (solvent, ions, metal atoms, and so on) (Morre-
ale et al., 2007), entropic losses (of both conformation and
configuration) (Carlsson and Aqvist, 2005) or the flexibility of
the target (the most striking and elusive point) (Cozzini et al.,
2008).

In this review, we focus on computer-aided drug discovery
in cases where the structure of the target has been obtained by
means of comparative modelling, refined by simulation of
molecular dynamics (MD), and finally, on inhibitors that
have been found using rational drug discovery through VS
experiments. A brief description of these methods and their
application to HDC are presented in the following sections.
Figure 1 shows the strategy scheme used in the case of mam-
malian HDC.

Comparative modelling versus experimental
structure determination; the example of histidine
decarboxylase

Knowing the ligand structure is a linear process, but things are
much more complicated for the receptor. Protein structures
are usually determined using powerful experimental tech-

niques such as X-ray crystallography, cryoelectron micros-
copy and nuclear magnetic resonance (NMR). The
development of these techniques, together with advances in
protein expression and purification, microcrystallization
(Abola et al., 2000) and the use of synchrotron light (Sorensen
et al., 2006), has led to a separate discipline referred to as
Structural Genomics (Chandonia and Brenner, 2006). Because
of this development, the growth of the Protein Data Bank
(PDB, i.e. the number of known protein structures) (Berman
et al., 2007), and the number of potential pharmacological
targets, has been exponential.

Nevertheless, there is a growing gap between the number of
known structures and sequences; that is, the number of newly
discovered protein sequences grows faster. For example, over
the last 4 years, the number of sequences in the comprehen-
sive Swiss-Prot/TrEMBL database (Boutet et al., 2007)
increased by a factor of 5.44, while the number of protein
structures deposited in the PDB increased by only a factor of
1.85. Therefore, the expanding field of Structural Genomics
benefits from advances in computer methods for determining
protein structure; comparative or homology modelling
(Marti-Renom et al., 2000; Xiang, 2006) attempts to bridge
this sequence-structure gap.

The technique relies on the observation that, during evo-
lution, protein structure is more stable and changes much
more slowly than the underlying sequence, so similar
sequences adopt practically identical structures, and distantly
related sequences will fold into similar structures (Chothia
and Lesk, 1986; Sander and Schneider, 1991). Thus, the
unknown structure of a target protein (not to be mistaken
with the drug target) can be inferred from the structure of a
template protein if there is enough sequence homology
between them. In order to obtain a reliable model, the thresh-
old for sequence identity depends on the number of aligned
residues, but is usually over 30%. It is important to stress that,
in some cases, homology between proteins is not clear from
pairwise methods such as sequence alignment. Profile-based
methods can be more sensitive in homology detection; since
the important factor in obtaining a reliable model is the
existence of homology between target and template, the
scope of comparative modelling methods can be extended, in
some cases, to low sequence identities between target and
template (Tramontano and Morea, 2003). Briefly, a homology
modelling protocol is carried out in a few sequential steps, as
described elsewhere (Marti-Renom et al., 2000; Baker and Sali,
2001; Fiser and Sali, 2003; John and Sali, 2003): finding
known structures related to the target sequence (templates),
aligning the target sequence with the templates, building the
model, and finally assessing and validating the model.

The applications of a protein structure model depend on its
accuracy, which tends to decrease as the evolutionary dis-
tance between target and templates increases, so the target-
template sequence identity is a good indication of the quality
of a given model. Fortunately, a protein structure model does
not have to be perfect to be helpful in biomedicine or bio-
technology; however, the type of problem that can be tackled
with a particular model does depend on its quality (Marti-
Renom et al., 2000), ranging from prediction of the approxi-
mate biochemical function (with models based on less than
30% sequence identity, at the low end of the accuracy

Figure 1 Sequential scheme of combined computer-based and
experimental approaches followed in our studies on mammalian
histidine decarboxylase over the last 5 years.
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spectrum), to predictions of important features in the target
protein that do not occur in the template structure (with
medium-resolution models). Moreover, the average quality of
models at the highest end of the accuracy spectrum, those
based on more than 50% sequence identity, is similar to that
of low-resolution X-ray structures (Baker and Sali, 2001). The
alignments on which these models are based contain almost
no errors, so, among other applications, they can be used for
structure-based drug discovery, small ligand docking and
prediction of detailed ligand–protein interactions.

It is generally assumed that docking to comparative models
is more challenging and less successful than docking to crys-
tallographic structures. However, little work has been done to
obtain quantitative information about the accuracy of
docking to homology models, to determine in detail why the
results are inferior to those obtained from experimentally
determined structures. In many examples, protein homology
models have supported the discovery of the optimum com-
pounds for potency and selectivity (for a detailed review and
examples see Hillisch et al., 2004; Jacobson and Sali, 2004).

The PLP-dependent HDCs are good examples of proteins for
which characterization by biophysical techniques has so far
been impossible. The instability of the protein makes it incon-
ceivable to reach that goal. However, comparative modelling,
together with computer simulations (see below), is allowing
us to gain insights into this molecular system, with a final aim
of revealing new intervention strategies. In 2003, the first
model of an active version of mammalian HDC was obtained
(Rodriguez-Caso et al., 2003a). The predicted structure was
validated experimentally (Fleming et al., 2004b); this allowed
us to integrate the previous experimental information on the
enzyme, obtaining new insights into the most promising
targets at which to interfere with the protein’s activity (the
catalytic centre and dimerization surface). In fact, the
prokaryotic and eukaryotic enzyme are homologous enzymes;
however, from the comparative modelling analysis of both
types of enzymes, it is clear that they do differ, mostly in

residues located in the substrate binding sites and in the
N-terminus of their respective monomers (Moya-Garcia et al.,
2006). A homology model of the Gram-negative Klebsiella
planticola HDC was built, using as a template the structure of
human PLP-dependent glutamate decarboxylase (GAD, EC
4.1.1.15), recently determined experimentally (Fenalti et al.,
2007). The two enzymes share a sequence identity of 24%.
Figure 2 shows a comparison of the monomer of both
enzymes. These deduced differences, together with other
simulation-based structure-function studies, can help to iden-
tify inhibitors more selective for any of the homologous
enzymes that can coexist in the human body (mammalian
and enterobacterial HDCs and Dopa decarboxylases).

Molecular dynamics: a more realistic approach to
protein function

In structure-based drug discovery, knowing the structure of
the drug target is often not enough. Structure determines
function, but it is not easy to deduce many of the activities or
properties of a protein just from its structure. A protein
cannot be merely reduced to its description as a rigid and
static structure, as it is a dynamical reality with conforma-
tional fluctuations in time and substantial changes in the
presence of ligands. Although the global structure is a key
element in the function of a protein, its flexibility is an
essential factor that modulates the relationship between
structure and function. To go further, flexibility, understood
as the capacity for conformational change in response to
external stimuli, is part of the nature of all proteins and
molecular systems. Thus, it is essential to understand how
and why proteins change their conformations in order to be
able to control and understand their biological functions.
This dynamical nature needs to be considered in the study of
the ligand–target interactions. Thus, for many applications,

Figure 2 Structural models of both mammalian (A) and bacterial (B) PLP-dependent histidine decarboxylase (HDC) monomers. For orien-
tation, amino(N)- and carboxy (C)-termini are shown. PLP-interacting residues K308 and H197 are depicted as dark red sticks with similar
perspective. Flexible loop region of mammalian HDC, predicted to both interact and move during substrate binding, is surrounded by a dark
red circle. As can be observed, the corresponding region in bacterial HDC is distorted, in agreement with the suspected differences between
the enzymes in both the substrate binding surface and the quaternary structures (for further information see Moya-Garcia et al., 2005; 2006).
Images were made using PyMOL (DeLano, 2002).
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such as VS experiments, it is advisable to represent the protein
as an ensemble of different conformations that describe the
inherent flexibility of the system, although there is not a clear
consensus on how the ensemble should be represented. There
are examples where many conformations were used (obtained
from different X-ray or NMR structures or generated by com-
puterized sampling techniques as Monte Carlo or MD) (Totrov
and Abagyan, 2008), or where only one was used that com-
prised information of the entire ensemble (averaging energies
or coordinates of many single conformations) (Osterberg
et al., 2002).

This blurry description is not enough to represent the
protein flexibility properly, a time-dependent feature of mac-
romolecular systems that is one of the most difficult yet essen-
tial to understand. MD is a powerful computer technique used
to study flexibility (Hansson et al., 2002; Norberg and Nilsson,
2003). It is valuable for understanding the dynamic behaviour
of proteins at different timescales, from the fast internal fluc-
tuations to the slower and more global movements that con-
stitute conformational changes, or, eventually, the folding of
a polypeptide into the native structure of a protein (Snow
et al., 2005). Furthermore, the explicit effects of solvent mol-
ecules and ions on the protein structure and stability can, and
should, be taken into account to obtain accurate temporal
averages of important structural and thermodynamic proper-
ties of the system under study, especially the binding energy,
which are of utmost importance in the field of drug discovery.

Molecular dynamics simulates molecular time-dependent
events in proteins and other biological macromolecules using
the laws of classical mechanics. In particular, Newton’s equa-
tions of motion are applied for an atomistic representation of
a molecular system (balls for atoms and string for bonds) by
employing MM force fields based on empirically deduced
interaction potentials or derived from more complex
quantum calculations. The energy of a molecular system
within the force field approximation is a sum of different
terms accounting for the distortion of the system as compared
with an idealized structure where bonded (bond stretching,
angle bending and torsions) and non-bonded (van der Waals
and electrostatics) interaction terms are included. The main
differences between the most widely used force fields [AMBER
(Case et al., 2004), GROMOS (van Gunsteren et al., 1996),
CHARMM (Brooks et al., 1983), and so on] are due to para-
metrical issues and the functional form of the different terms
entering in the force field equation. Although atomic charges
are explicitly included, they remain constant over the simu-
lation in most of the force fields (new polarized force fields are
now emerging to ameliorate this drawback, see Xie et al.,
2008), precluding the use of MM force fields in systems under-
going chemical reactions. To model such changes adequately,
as in processes such as bond-breaking/-forming, charge-
transfer or electronic excitation, it is necessary to rely on the
more accurate approximation obtained with QM. As noted
above, it is also essential to introduce the effect of the envi-
ronment. It has been demonstrated that significant changes
can occur both in the biological structures and in the reactiv-
ity profile due to environmental influences. Therefore, in
cases where chemical reactions need to be modelled while
also taking into account environmental effects, it is essential
to use a method that can account for both. Due to its high

computer costs, the application of QM is still limited to rela-
tively small systems consisting of up to tens or several hun-
dreds of atoms, or even smaller systems when using higher
levels of theory.

A solution will be a combined method able to treat the
main atoms involved in the reaction with QM and the rest
with MM. These methods will join the accuracy of the QM
description with the low computer costs of MM; these are
called hybrid methods (QM/MM) and have become very
popular (Warshel, 2003). These methods are being used in the
study of reactions of biological interest (Garcia-Viloca et al.,
2004; Marti et al., 2004) and it has been demonstrated they
can be used to identify key residues in catalysis (Ridder et al.,
2003), resolve mechanistic questions and verify the funda-
mental principles of catalysis (Marti et al., 2004). Potential
contributions, obtained from this modelling of enzyme reac-
tions, to drug discovery have recently been reviewed by Raha
et al. (2007) and Mulholland (2005). These include the iden-
tification of key catalytic residues and the reaction mecha-
nism leading to the identification of transition states and
other intermediates, the prediction of drug metabolism and
the accurate calculation of the free energy of binding.

Our group has applied simulation techniques and MD tech-
niques, by using the hybrid methodology QM/MM, to
unravel the basis of the mammalian HDC catalytic mecha-
nism (Moya-Garcia et al., 2008). In this study, we examined
the decarboxylation of the intermediate cofactor-substrate
adduct (the external aldimine) in the enzymatic environment
(catalysed reaction) and in an aqueous environment. In each
case, the reaction environment was explicitly considered and
the energy used for each process was calculated. From a com-
parison of the reactions in the two conditions, we obtained
the differentiating elements that explain the catalysis by
mammalian HDC. We consider this extensively evaluated
computer model of the mammalian HDC structure, in its
cofactor-substrate adduct bound state, to be the first step
towards performing high-throughput screening in silicio.

Virtual screening techniques: searching for new
molecules

The type of strategy employed in VS depends on the structural
information that is readily available, and can be performed
even if the structure of the target is not known [using phar-
macophores (Sun, 2008), similarity techniques applied to
known active ligands (Bajorath, 2001), and so on]. The most
favourable case is when both of the structures (the target and
the ligand) are known. Here, docking-based techniques are
very promising, although far from being completely success-
ful (Warren et al., 2006). In docking, the problem is to find
out of the many possible ways a ligand can be positioned
within a binding site, the appropriate one that triggers/
inhibits the biological activity of the target. To discern which
position is the best, each of them is scored according to their
reaction with the target. This is done by means of a math-
ematical function, the scoring function, built to capture the
essential events that occur when a ligand binds to a target
(Warren et al., 2006). Much of the uncertainty (although not
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all) in docking and scoring protocols has its roots in the
definition of these functions. VS is an extension of the
docking procedure, actually performed with a small number
of molecules, to handle millions of them. In this case, the
objective is somehow different than that of docking: success is
achieved if we are good at separating the active compounds
from the inactive ones, and if, at least, some of the active
compounds are found at the top of a list based on the above-
mentioned scoring function. The explosion in the use of VS in
the last decade can be understood when it is considered that
although more money is invested in R&D projects, there are
fewer newly discovered drugs reaching the market (Smith,
2002). This fact has fuelled the development of many differ-
ent docking algorithms and sophisticated scoring functions
(Sousa et al., 2006).

A VS protocol is a sequence of filters that increase in com-
plexity to reduce the number of molecules subjected to
experimental assays to a tractable amount. It is customary to
start with molecules fulfilling Lipinski’s rule of five (Lipinski
et al., 2001) and possibly imposing some other constraints,
such as adequate solubility or certain kind of chemotypes
(focalized libraries). Nevertheless, brute force approximation
can be also employed, based on the idea that the more mol-
ecules you can test, the higher the probability of finding
promising candidates. An increasing number of databases are
available to start with, for example, ZINC, with over 8 million
compounds available (Irwin and Shoichet, 2005). Other data-
bases such as DUD are useful for testing a VS protocol prior to
undertaking a search for new molecules, so one can assess the
performance of the protocol to decide if it is appropriate for a
particular problem (Huang et al., 2006).

To facilitate the choice of a particular protocol, or to
compare different protocols, we have developed VSDMIP
(Virtual Screening Data Management on an Integrated Plat-
form) (Gil-Redondo et al., 2009), a flexible fully automated
computer platform that combines all the steps needed to
generate a short list of candidates from a database of 2-D
molecular structures. In brief, the VSDMIP protocol consists
of (i) a database; (ii) a library of service interfaces and plugins;
and (iii) a set of workflows and implementing commands. All
of the data and VS results from small molecules (ligands) are
stored within VSDMIP. The user controls the platform
through different command line utilities and configures it
using XML files. VSDMIP currently runs on Linux/x86 plat-
forms and has been successfully implemented in the
MareNostrum supercomputer at the Barcelona Supercomput-
ing Center (BSC), making it possible to screen 4 million com-
pounds (the actual size of our molecular database) in less than
1 month.

In general, the steps needed to initiate a VS study can be
broadly divided into the preparation of the target and the
ligands. (1) For the target, starting from its 3-D structure, we
(i) choose only the domains surrounding the active site, (ii)
add missing loops and atoms (especially if they are close to
the binding site), (iii) add hydrogen atoms, (iv) assign atom
types and atomic charges, and finally (v) characterize the
active site. This last step entails limiting the active site by a
box (where subsequent docking will be performed) and
making the space covered by the box discrete with grid points
spanning the three-dimensional space. Each grid point con-

tains information on the interaction of an atomic probe atom
(representing common atom types in pharmacologically rel-
evant molecules), including the electrostatic interaction and
the possibility of forming hydrogen bonds between the ligand
and the residues at the binding site. (2) For the ligands, we (i)
start with a 2-D topological representation of the structures
(SMILES string, see Weininger, 1988) in order to avoid bias
related to the conformations, (ii) transform them into 3-D
(adding hydrogen atoms and generating tautomers, steroiso-
mers, and different ring conformations if necessary), (iii)
assign atomic radii and charges, and (iv) perform conforma-
tional analysis with ALFA (Gil-Redondo, 2006).

Each ligand is then docked into the target active site
with CDOCK (Perez and Ortiz, 2001), our docking software,
which includes a movement/evaluation/refinement strategy:
(i) translate and rotate the ligand in each grid point; (ii)
evaluate the energy for each configuration generated; and (iii)
refine the best configurations generated using a rigid body
SIMPLEX optimization program (Nelder and Mead, 1965).
Finally, the best configuration of all is taken as the docking
result. The scoring function implemented in CDOCK
accounts for van der Waals and electrostatic forces, as well as
hydrogen–bond interactions. It also includes a solvation cor-
rection term based on an implicit model (Morreale et al.,
2007). Within VSDMIP, the docking step can be preceded by
a docking method such as DOCK (Kuntz et al., 1982) or FRED
(OpenEye Scientific Software, Inc.), configurated in a less
accurate but faster way, or it can be replaced by Autodock
(Morris et al., 1998).

Representing the protein as a grid imposes the rigidity con-
straint into the docking calculations, which is one of the
main drawbacks in computer-aided drug discovery based on
structure. To overcome this drawback, the best molecules clas-
sified are submitted to a short MD simulation in an explicit
solvent. MM-GBSA analysis is performed on selected snap-
shots to obtain an estimate of the free energy of binding
(entropy not included) for each compound (Massova and
Kollman, 2000). This is the value employed for the definitive
classification. A visual inspection of each of the final best-
ranked candidates is always mandatory.

The first attempt of drug discovery based on
mammalian HDC structure

As far as we know, there has been no attempt to perform
high-throughput screening on mammalian HDC in order to
find new inhibitors with a potential pharmacological use,
although there is interest in the characterization of this
enzyme as a pharmacological target. The HDC inhibitors
known to date are substrate analogues and were developed in
the 1970s (DeGraw et al., 1977). Recently a new strategy for
developing new inhibitors based on the external aldimine,
which is the common intermediate of the transformation of
all amino acids catalysed by PLP-dependent enzymes, has
been reported (Wu et al., 2008). However, the authors do not
use computer modelling to guide their inhibitor design ratio-
nale. They try to elucidate the structure–activity relationship
of their synthesized compounds based on a rough computer
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model of the active site of human HDC, together with the
presumed intracellular form of the compound with the
highest inhibition rate, namely pyridoxyl-histidine methyl
ester.

Docking of known inhibitors; validation of
the model

We were able to build a high-quality structural model for
HDC. It shows the relevant structural features and reliably
reproduces the behaviour of the enzyme. We were able to
reveal key amino acids for the activity and stability of HDC
(Rodriguez-Caso et al., 2003a; Fleming et al., 2004b) and we
discern particular features of the reaction mechanism, with
full atomic details (Moya-Garcia et al., 2008). Nevertheless, we
submitted our model to an additional validation test to check
whether it can be used to discover new HDC inhibitors with
potential pharmacological use. We used the above-mentioned
VSDMIP with the natural substrate histidine and the two
well-known inhibitors a-FMH and HME. A full standard VS
protocol was followed.

Characterization of the receptor was carried out as
explained above. The active site pocket was determined by a
5 Å box centred at histidine in its external aldimine confor-
mation and using interaction grids of 0.5 Å spacing. Once the
active site was demarcated, the set of test ligands was docked
using CDOCK. The best results from the docking process were
obtained from the database and visualized in PyMol (DeLano,
2002). The coordinates and topology files of the receptor-
ligand complexes were then generated using the program
LEaP of the AMBER Molecular Dynamics package (Case et al.,
2005). PLP and ligand parameters were obtained with Ante-
chamber module. The systems were solvated, neutralized and
submitted to a common protocol of energy minimization and
MD simulation using the program sander from AMBER
package. A 2 ns production stage at a temperature of 300 K
was followed by a cooling process, in which the temperature
was decreased gradually from 300 to 292 K.

The minimum energy configuration for each ligand with
the HDC active site, according to the scoring function imple-
mented in CDOCK, were obtained and checked visually. All of
them showed similar total binding energy values, ranging

from -18 kcal·mol-1 (for both HME and histidine) to
-11 kcal·mol-1 for FMH. These energy values together with
those obtained from the previous VS carried out using a larger
number of compounds, showed that we are dealing with a
closed active site, which is in agreement with the structural
information derived from our HDC homology model and
other PLP-dependent decarboxylases structures, whose active
sites are frequently buried in the dimerization surface. Our
calculations, for the pathway connecting the active site with
the outside solvent, show that the substrate needs to pass over
a channel of about 40 Å in length inside the enzyme to reach
the active site.

The best configurations docked for histidine and the two
inhibitors computed show a satisfactory fit to the active site,
with the proper orientation to proceed with the transaldimi-
nation reaction and form the external aldimine with the
cofactor, as can be seen in Figure 3. Both PLP and ligand were
able to move freely in the active site during the MD simula-
tion since no local restrictions were imposed, resulting in a
slight separation between them. As a result of previous VS
studies, where new inhibitors were found and successfully
tested, the structures of receptor-inhibitor complexes were
then determined by means of X-ray diffraction in order to
check the similarity of the configuration predicted after
docking and the validation protocol with the one obtained by
crystallography (Warren et al., 2006). In only a few cases,
VS-derived complexes resembled those structures obtained by
experimental means, indicating that the computer-derived
approaches are not yet capable of giving us a perfect image of
the active site of an enzyme when binding any ligand, but
they are reasonably accurate for determining the accommo-
dation and stability of those compounds attracted to the
active site pocket.

Preliminary results of the docking process in our VS study
over the ZINC 7 compound database (Irwin and Shoichet,
2005), which comprises 4 million molecules, showed the
method tended to fail when trying to fit compounds with a
large number of atoms. This would significantly reduce the
number of suitable candidates as potential inhibitors of HDC
activity. These results are in agreement with those observed by
Wu et al. (2008).

On the other hand, those compounds identified with suit-
able configurations after docking are arranged in the active

Figure 3 Final configurations of the docked histidine substrate (A), aFMH (B) and HME (C) into the HDC active site (depicted in yellow sticks)
after screening with VSDMIP and molecular dynamics simulation. Residues previously described to be located in the proximity of the natural
substrate and the cofactor pyridoxal-5’-phosphate (PLP) are shown as green sticks. Suffixes ‘a’ and ‘b’ indicate the residue-containing
monomers, monomer ‘a’ being the one that binds PLP.
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site as they can make interactions with key residues involved
in stabilization of the substrate (Moya-Garcia et al., 2008). Y83
and Y337, which have been determined as important residues
in favouring the reception of the ligand into the active site
(Rodriguez-Caso et al., 2003a; Fleming et al., 2004b), as well as
H351 and H197, are located in the proximity of our best-
docked compounds. Further refinement of these preliminary
results by means of MD simulations will consolidate these
interactions or even reveal new ones that were not obvious
just after the docking process.

Discussion and conclusions

Due to the pleiotropic effects of histamine, and on the basis of
results obtained with HDC knockout mice (Jorgensen et al.,
2007; Haas et al., 2008; Ohtsu, 2008; Schubert and Peura,
2008), it is possible that selective, direct inhibition of HDC
could have many different secondary effects. To be able to
control the production of histamine by this method, either
locally (for instance, topical use) or at the systemic level,
rather than just interfering with the reception of the amine
on target cells, could have important therapeutic conse-
quences in physiopathological situations where either the
local or circulating levels of histamine are excessive due to
abnormal histamine production. Also, given the important
roles of histamine in the central nervous system (Wijtmans
et al., 2008; Zhao et al., 2008), special attention should be
paid to the ability of any HDC inhibitor (or its derivatives) to
cross the blood-brain barrier, and this should be evaluated by
experimental and/or in silicio approaches (Kortagere et al.,
2008; Malakoutikhah et al., 2008). In addition, therapies com-
bining both HDC inhibitors and histamine receptor agonists/
antagonists should not be ruled out.

This review presents an example of not only a potentially
interesting protein for pharmacology, but also a drug target
that has been very difficult to characterize by experimental
approaches and, consequently, to use efficiently for drug dis-
covery. By changing the strategy, that is by combining
in silicio and experimental techniques, the structural and cata-
lytic properties of HDC are now known and this knowledge
can be used to discover potential, new antihistamine drugs. In
addition, this strategy can be applied to many other proteins
related to amine metabolism, immunology and drug dis-
covery in general, to solve other pending problems in
biomedicine, biotechnology and pharmacology. From an
economical point of view, it is obvious that this strategy
would also be convenient for the pharmacological industry,
since the in silicio approach can save significant investment in
experimental protein chemistry techniques and high-
throughput screening protocols.
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